{ "id": "1008.3887", "version": "v13", "published": "2010-08-23T19:07:36.000Z", "updated": "2014-06-17T14:52:55.000Z", "title": "Congruences involving generalized central trinomial coefficients", "authors": [ "Zhi-Wei Sun" ], "comment": "34 pages", "journal": "Sci. China Math. 57(2014), 1375-1400", "categories": [ "math.NT", "math.CO" ], "abstract": "For integers $b$ and $c$ the generalized central trinomial coefficient $T_n(b,c)$ denotes the coefficient of $x^n$ in the expansion of $(x^2+bx+c)^n$. Those $T_n=T_n(1,1)\\ (n=0,1,2,\\ldots)$ are the usual central trinomial coefficients, and $T_n(3,2)$ coincides with the Delannoy number $D_n=\\sum_{k=0}^n\\binom nk\\binom{n+k}k$ in combinatorics. We investigate congruences involving generalized central trinomial coefficients systematically. Here are some typical results: For each $n=1,2,3,\\ldots$ we have $$\\sum_{k=0}^{n-1}(2k+1)T_k(b,c)^2(b^2-4c)^{n-1-k}\\equiv0\\pmod{n^2}$$ and in particular $n^2\\mid\\sum_{k=0}^{n-1}(2k+1)D_k^2$; if $p$ is an odd prime then $$\\sum_{k=0}^{p-1}T_k^2\\equiv\\left(\\frac{-1}p\\right)\\ \\pmod{p}\\ \\ \\ {\\rm and}\\ \\ \\ \\sum_{k=0}^{p-1}D_k^2\\equiv\\left(\\frac 2p\\right)\\ \\pmod{p},$$ where $(-)$ denotes the Legendre symbol. We also raise several conjectures some of which involve parameters in the representations of primes by certain binary quadratic forms.", "revisions": [ { "version": "v13", "updated": "2014-06-17T14:52:55.000Z" } ], "analyses": { "subjects": [ "11A07", "11B75", "05A15", "11E25" ], "keywords": [ "congruences", "usual central trinomial coefficients", "binary quadratic forms", "odd prime", "delannoy number" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1008.3887S" } } }