{ "id": "1008.2651", "version": "v1", "published": "2010-08-16T13:29:33.000Z", "updated": "2010-08-16T13:29:33.000Z", "title": "Factorization property and Arens regularity", "authors": [ "Kazem Haghnejad Azar" ], "categories": [ "math.FA" ], "abstract": "In this paper, we study the Arens regularity properties of module actions and we extend some proposition from Baker, Dales, Lau and others into general situations. For Banach $A-bimodule$ $B$, let $Z_1(A^{**})$, ${Z}^\\ell_{B^{**}}(A^{**})$ and ${Z}^\\ell_{A^{**}}(B^{**})$ be the topological centers of second dual of Banach algebra $A$, left module action $\\pi_\\ell:~A\\times B\\rightarrow B$ and right module action $\\pi_r:~B\\times A\\rightarrow B$, respectively. We establish some relationships between them and factorization properties of $A^*$ and $B^*$. We search some necessary and sufficient conditions for factorization of $A^*$, $B$ and $B^*$ with some results in group algebras. We extend the definitions of the left and right multiplier for module actions.", "revisions": [ { "version": "v1", "updated": "2010-08-16T13:29:33.000Z" } ], "analyses": { "subjects": [ "46L06", "46L07", "46L10", "47L25", "F.2.2", "I.2.7" ], "keywords": [ "factorization property", "arens regularity properties", "right module action", "left module action", "sufficient conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1008.2651H" } } }