{ "id": "1008.2599", "version": "v1", "published": "2010-08-16T08:49:59.000Z", "updated": "2010-08-16T08:49:59.000Z", "title": "Elimination of Hamilton-Jacobi equation in extreme variational problems", "authors": [ "Igor Orlov" ], "comment": "10 pages", "categories": [ "math.OC", "math.AP", "math.FA" ], "abstract": "It is shown that extreme problem for one-dimensional Euler-Lagrange variational functional in $C^1[a;b]$ under the strengthened Legendre condition can be solved without using Hamilton-Jacobi equation. In this case, exactly one of the two possible cases requires a restriction to a length of $[a;b]$, defined only by the form of integrand. The result is extended to the case of compact extremum in $H^1[a;b]$.", "revisions": [ { "version": "v1", "updated": "2010-08-16T08:49:59.000Z" } ], "analyses": { "subjects": [ "49J05", "49L99", "G.1.6", "G.1.8" ], "keywords": [ "extreme variational problems", "hamilton-jacobi equation", "elimination", "one-dimensional euler-lagrange variational functional", "strengthened legendre condition" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1008.2599O" } } }