{ "id": "1008.2401", "version": "v1", "published": "2010-08-13T23:00:28.000Z", "updated": "2010-08-13T23:00:28.000Z", "title": "A Combinatorial Formula for Orthogonal Idempotents in the $0$-Hecke Algebra of the Symmetric Group", "authors": [ "Tom Denton" ], "comment": "25 pages, 2 figures", "categories": [ "math.RT", "math.QA" ], "abstract": "Building on the work of P.N. Norton, we give combinatorial formulae for two maximal decompositions of the identity into orthogonal idempotents in the $0$-Hecke algebra of the symmetric group, $\\mathbb{C}H_0(S_N)$. This construction is compatible with the branching from $S_{N-1}$ to $S_{N}$.", "revisions": [ { "version": "v1", "updated": "2010-08-13T23:00:28.000Z" } ], "analyses": { "keywords": [ "orthogonal idempotents", "hecke algebra", "combinatorial formula", "symmetric group" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1008.2401D" } } }