{ "id": "1008.2381", "version": "v2", "published": "2010-08-13T19:57:25.000Z", "updated": "2010-08-31T19:17:33.000Z", "title": "Note On Prime Gaps And Very Short Intervals", "authors": [ "N. A. Carella" ], "comment": "12 Pages, 1 Table, Improved", "categories": [ "math.NT" ], "abstract": "Assuming the Riemann hypothesis, this article discusses a new elementary argument that seems to prove that the maximal prime gap of a finite sequence of primes p_1, p_2, ..., p_n <= x, satisfies max {p_(n+1) - p_n : p_n <= x} <= c1((logx)^2)/loglogx, c1 > 0 constant. Equivalently, it shows that the very short intervals (x, x + y] contain prime numbers for all y > c2((logx)^2)/loglogx, c2 > 0 constant, and sufficiently large x > 0.", "revisions": [ { "version": "v2", "updated": "2010-08-31T19:17:33.000Z" } ], "analyses": { "subjects": [ "11N05", "11A41", "11P32" ], "keywords": [ "short intervals", "contain prime numbers", "maximal prime gap", "article discusses", "finite sequence" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1008.2381C" } } }