{ "id": "1008.2099", "version": "v2", "published": "2010-08-12T11:35:53.000Z", "updated": "2011-03-15T15:48:56.000Z", "title": "Persistence of embedded eigenvalues", "authors": [ "Shmuel Agmon", "Ira Herbst", "Sara Maad Sasane" ], "categories": [ "math.FA", "math-ph", "math.MP" ], "abstract": "We consider conditions under which an embedded eigenvalue of a self-adjoint operator remains embedded under small perturbations. In the case of a simple eigenvalue embedded in continuous spectrum of multiplicity m < \\infty we show that in favorable situations the set of small perturbations of a suitable Banach space which do not remove the eigenvalue form a smooth submanifold of co-dimension m.", "revisions": [ { "version": "v2", "updated": "2011-03-15T15:48:56.000Z" } ], "analyses": { "subjects": [ "81Q15" ], "keywords": [ "embedded eigenvalue", "small perturbations", "persistence", "simple eigenvalue", "self-adjoint operator remains" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1008.2099A" } } }