{ "id": "1008.1939", "version": "v1", "published": "2010-08-11T15:34:49.000Z", "updated": "2010-08-11T15:34:49.000Z", "title": "A weak-strong convergence property and symmetry of minimizers of constrained variational problems in $\\mathbb{R}^N$", "authors": [ "Hichem Hajaiej", "Stefan Krömer" ], "comment": "25 pages", "categories": [ "math.AP" ], "abstract": "We prove a weak-strong convergence result for functionals of the form $\\int_{\\mathbb{R}^N} j(x, u, Du)\\,dx$ on $W^{1,p}$, along equiintegrable sequences. We will then use it to study cases of equality in the extended Polya-Szeg\\\"o inequality and discuss applications of such a result to prove the symmetry of minimizers of a class of variational problems including nonlocal terms under multiple constraints.", "revisions": [ { "version": "v1", "updated": "2010-08-11T15:34:49.000Z" } ], "analyses": { "subjects": [ "35J50", "35B05", "49J45" ], "keywords": [ "weak-strong convergence property", "constrained variational problems", "minimizers", "weak-strong convergence result", "study cases" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1008.1939H" } } }