{ "id": "1008.1701", "version": "v1", "published": "2010-08-10T12:15:38.000Z", "updated": "2010-08-10T12:15:38.000Z", "title": "An elementary approach to Brownian local time based on simple, symmetric random walks", "authors": [ "Tamas Szabados", "Balazs Szekely" ], "comment": "17 pages", "journal": "Periodica Mathematica Hungarica, Volume 51, Number 1, Pages 79-98, (2005)", "doi": "10.1007/s10998-005-0022-8", "categories": [ "math.PR" ], "abstract": "In this paper we define Brownian local time as the almost sure limit of the local times of a nested sequence of simple, symmetric random walks. The limit is jointly continuous in $(t,x)$. The rate of convergence is $n^{\\frac14} (\\log n)^{\\frac34}$ that is close to the best possible. The tools we apply are almost exclusively from elementary probability theory.", "revisions": [ { "version": "v1", "updated": "2010-08-10T12:15:38.000Z" } ], "analyses": { "subjects": [ "60J55", "60J65", "60F15" ], "keywords": [ "symmetric random walks", "elementary approach", "define brownian local time", "elementary probability theory", "sure limit" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1008.1701S" } } }