{ "id": "1008.1638", "version": "v1", "published": "2010-08-10T06:08:52.000Z", "updated": "2010-08-10T06:08:52.000Z", "title": "Functions of normal operators under perturbations", "authors": [ "Alexei Aleksandrov", "Vladimir Peller", "Denis Potapov", "Fedor Sukochev" ], "comment": "32 pages", "categories": [ "math.FA", "math.CA", "math.CV", "math.SP" ], "abstract": "In \\cite{Pe1}, \\cite{Pe2}, \\cite{AP1}, \\cite{AP2}, and \\cite{AP3} sharp estimates for $f(A)-f(B)$ were obtained for self-adjoint operators $A$ and $B$ and for various classes of functions $f$ on the real line $\\R$. In this paper we extend those results to the case of functions of normal operators. We show that if a function $f$ belongs to the H\\\"older class $\\L_\\a(\\R^2)$, $0<\\a<1$, of functions of two variables, and $N_1$ and $N_2$ are normal operators, then $\\|f(N_1)-f(N_2)\\|\\le\\const\\|f\\|_{\\L_\\a}\\|N_1-N_2\\|^\\a$. We obtain a more general result for functions in the space $\\L_\\o(\\R^2)=\\big\\{f:~|f(\\z_1)-f(\\z_2)|\\le\\const\\o(|\\z_1-\\z_2|)\\big\\}$ for an arbitrary modulus of continuity $\\o$. We prove that if $f$ belongs to the Besov class $B_{\\be1}^1(\\R^2)$, then it is operator Lipschitz, i.e., $\\|f(N_1)-f(N_2)\\|\\le\\const\\|f\\|_{B_{\\be1}^1}\\|N_1-N_2\\|$. We also study properties of $f(N_1)-f(N_2)$ in the case when $f\\in\\L_\\a(\\R^2)$ and $N_1-N_2$ belongs to the Schatten-von Neuman class $\\bS_p$.", "revisions": [ { "version": "v1", "updated": "2010-08-10T06:08:52.000Z" } ], "analyses": { "keywords": [ "normal operators", "perturbations", "schatten-von neuman class", "operator lipschitz", "real line" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1008.1638A" } } }