{ "id": "1008.1429", "version": "v2", "published": "2010-08-08T22:01:21.000Z", "updated": "2010-11-22T02:47:00.000Z", "title": "Soficity, amenability, and dynamical entropy", "authors": [ "David Kerr", "Hanfeng Li" ], "comment": "Minor change. To appear in Amer. J. Math", "journal": "Amer. J. Math. 135 (2013), no. 3, 721--761", "categories": [ "math.DS", "math.GR", "math.OA" ], "abstract": "In a previous paper the authors developed an operator-algebraic approach to Lewis Bowen's sofic measure entropy that yields invariants for actions of countable sofic groups by homeomorphisms on a compact metrizable space and by measure-preserving transformations on a standard probability space. We show here that these measure and topological entropy invariants both coincide with their classical counterparts when the acting group is amenable.", "revisions": [ { "version": "v2", "updated": "2010-11-22T02:47:00.000Z" } ], "analyses": { "keywords": [ "dynamical entropy", "lewis bowens sofic measure entropy", "amenability", "standard probability space", "operator-algebraic approach" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1008.1429K" } } }