{ "id": "1008.0473", "version": "v2", "published": "2010-08-03T07:29:52.000Z", "updated": "2010-08-08T18:55:21.000Z", "title": "Algebraic integers as special values of modular units", "authors": [ "Ja Kyung Koo", "Dong Hwa Shin", "Dong Sung Yoon" ], "categories": [ "math.NT" ], "abstract": "Let $\\varphi(\\tau)=\\eta((\\tau+1)/2)^2/\\sqrt{2\\pi}e^\\frac{\\pi i}{4}\\eta(\\tau+1)$ where $\\eta(\\tau)$ is the Dedekind eta-function. We show that if $\\tau_0$ is an imaginary quadratic number with $\\mathrm{Im}(\\tau_0)>0$ and $m$ is an odd integer, then $\\sqrt{m}\\varphi(m\\tau_0)/\\varphi(\\tau_0)$ is an algebraic integer dividing $\\sqrt{m}$. This is a generalization of Theorem 4.4 given in [B. C. Berndt, H. H. Chan and L. C. Zhang, Ramanujan's remarkable product of theta-functions, Proc. Edinburgh Math. Soc. (2) 40 (1997), no. 3, 583-612]. On the other hand, let $K$ be an imaginary quadratic field and $\\theta_K$ be an element of $K$ with $\\mathrm{Im}(\\theta_K)>0$ which generators the ring of integers of $K$ over $\\mathbb{Z}$. We develop a sufficient condition of $m$ for $\\sqrt{m}\\varphi(m\\theta_K)/\\varphi(\\theta_K)$ to become a unit.", "revisions": [ { "version": "v2", "updated": "2010-08-08T18:55:21.000Z" } ], "analyses": { "subjects": [ "11F03", "11F20" ], "keywords": [ "algebraic integer", "special values", "modular units", "imaginary quadratic number", "imaginary quadratic field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1008.0473K" } } }