{ "id": "1008.0262", "version": "v2", "published": "2010-08-02T09:32:47.000Z", "updated": "2011-06-24T12:16:03.000Z", "title": "Gradient Systems on Networks", "authors": [ "Delio Mugnolo", "René Pröpper" ], "comment": "11 pages, revised version", "categories": [ "math.AP" ], "abstract": "We consider a class of linear differential operators acting on vector-valued function spaces with general coupled boundary conditions. Unlike in the more usual case of so-called quantum graphs, the boundary conditions can be nonlinear. After introducing a suitable Lyapunov function we prove well-posedness and invariance results for the corresponding nonlinear diffusion problem.", "revisions": [ { "version": "v2", "updated": "2011-06-24T12:16:03.000Z" } ], "analyses": { "subjects": [ "35K51", "35R02", "47H20" ], "keywords": [ "gradient systems", "general coupled boundary conditions", "corresponding nonlinear diffusion problem", "function spaces", "usual case" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1008.0262M" } } }