{ "id": "1007.5040", "version": "v2", "published": "2010-07-28T18:12:29.000Z", "updated": "2010-08-16T18:20:12.000Z", "title": "Elliptic elements in a Weyl group: a homogeneity property", "authors": [ "G. Lusztig" ], "comment": "29 pages; a new section added", "categories": [ "math.RT" ], "abstract": "Let G be a reductive group over an algebraically closed field whose characteristic is not a bad prime for G. Let w be an elliptic element of the Weyl group which has minimal length in its conjugacy class. We show that there exists a unique unipotent class X in G such that the following holds: if V is the variety of pairs consisting of an element g in X and a Borel subgroup B such that B,gBg^{-1} are in relative position w, then V is a homogeneous G-space.", "revisions": [ { "version": "v2", "updated": "2010-08-16T18:20:12.000Z" } ], "analyses": { "keywords": [ "weyl group", "elliptic element", "homogeneity property", "unique unipotent class", "bad prime" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.5040L" } } }