{ "id": "1007.4567", "version": "v1", "published": "2010-07-26T20:38:24.000Z", "updated": "2010-07-26T20:38:24.000Z", "title": "Finite-dimensional global attractors in Banach spaces", "authors": [ "Alexandre N Carvalho", "José A Langa", "James C Robinson" ], "categories": [ "math.AP", "math.DS" ], "abstract": "We provide bounds on the upper box-counting dimension of negatively invariant subsets of Banach spaces, a problem that is easily reduced to covering the image of the unit ball under a linear map by a collection of balls of smaller radius. As an application of the abstract theory we show that the global attractors of a very broad class of parabolic partial differential equations (semilinear equations in Banach spaces) are finite-dimensional.", "revisions": [ { "version": "v1", "updated": "2010-07-26T20:38:24.000Z" } ], "analyses": { "keywords": [ "banach spaces", "finite-dimensional global attractors", "parabolic partial differential equations", "semilinear equations", "negatively invariant subsets" ], "publication": { "doi": "10.1016/j.jde.2010.09.032", "journal": "Journal of Differential Equations", "year": 2010, "volume": 249, "number": 12, "pages": 3099 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010JDE...249.3099C" } } }