{ "id": "1007.4375", "version": "v2", "published": "2010-07-26T04:52:10.000Z", "updated": "2012-02-10T22:57:41.000Z", "title": "Distribution of Eigenvalues in Electromagnetic Scattering on an Arbitrarily Shaped Dielectric", "authors": [ "Yajun Zhou" ], "comment": "Expanded version with more examples. Some notational changes. Conclusion intact. 2 tables, 15 pages", "categories": [ "math-ph", "cond-mat.mtrl-sci", "math.MP", "physics.optics" ], "abstract": "We study the distribution of eigenvalues for the Green operator occurring in the scattering of electromagnetic waves by an arbitrarily shaped dielectric medium. It is revealed that the totality of eigenvalues (counting multiplicities) can be enumerated as a sequence $ \\{\\lambda_s\\}_{s=1}^N,N\\leq\\aleph_0$, with only two possible accumulation points $ \\{0,-1/2\\}$, and the following spectral series converges: $ \\sum_{s=1}^N|\\lambda_s|^2|1+2\\lambda_s|^4<+\\infty$.", "revisions": [ { "version": "v2", "updated": "2012-02-10T22:57:41.000Z" } ], "analyses": { "keywords": [ "eigenvalues", "electromagnetic scattering", "distribution", "spectral series converges", "arbitrarily shaped dielectric medium" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.4375Z" } } }