{ "id": "1007.4270", "version": "v1", "published": "2010-07-24T13:56:35.000Z", "updated": "2010-07-24T13:56:35.000Z", "title": "Newton polytopes for horospherical spaces", "authors": [ "Kiumars Kaveh", "A. G. Khovanskii" ], "comment": "17 pages", "categories": [ "math.AG" ], "abstract": "A subgroup H of a reductive group G is horospherical if it contains a maximal unipotent subgroup. We describe the Grothendieck semigroup of invariant subspaces of regular functions on G/H as a semigroup of convex polytopes. From this we obtain a formula for the number of solutions of a generic system of equations on G/H in terms of mixed volume of polytopes. This generalizes Bernstein-Kushnirenko theorem from toric geometry.", "revisions": [ { "version": "v1", "updated": "2010-07-24T13:56:35.000Z" } ], "analyses": { "subjects": [ "14M17", "14M25" ], "keywords": [ "newton polytopes", "horospherical spaces", "maximal unipotent subgroup", "generalizes bernstein-kushnirenko theorem", "grothendieck semigroup" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.4270K" } } }