{ "id": "1007.4043", "version": "v1", "published": "2010-07-23T05:27:43.000Z", "updated": "2010-07-23T05:27:43.000Z", "title": "A Density Condition for Interpolation on the Heisenberg Group", "authors": [ "Bradley Currey", "Azita Mayeli" ], "categories": [ "math.RT" ], "abstract": "Let $N$ be the Heisenberg group. We consider left-invariant multiplicity free subspaces of $L^2(N)$. We prove a necessary and sufficient density condition in order that such subspaces possess the interpolation property with respect to a class of discrete subsets of $N$ that includes the integer lattice. We exhibit a concrete example of a subspace that has interpolation for the integer lattice, and we also prove a necessary and sufficient condition for shift invariant subspaces to possess a singly-generated orthonormal basis of translates.", "revisions": [ { "version": "v1", "updated": "2010-07-23T05:27:43.000Z" } ], "analyses": { "subjects": [ "92A20", "43A80" ], "keywords": [ "heisenberg group", "left-invariant multiplicity free subspaces", "integer lattice", "sufficient density condition", "shift invariant subspaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.4043C" } } }