{ "id": "1007.3855", "version": "v2", "published": "2010-07-22T11:08:28.000Z", "updated": "2011-03-29T13:42:54.000Z", "title": "Bowen's formula for meromorphic functions", "authors": [ "Krzysztof Barański", "Bogusława Karpińska", "Anna Zdunik" ], "comment": "26 pages", "journal": "Ergodic Theory Dynam. Systems 32 (2012), 1165-1189", "doi": "10.1017/S0143385711000290", "categories": [ "math.DS" ], "abstract": "Let $f$ be an arbitrary transcendental entire or meromorphic function in the class $\\mathcal S$ (i.e. with finitely many singularities). We show that the topological pressure $P(f,t)$ for $t > 0$ can be defined as the common value of the pressures $P(f,t, z)$ for all $z \\in \\mathbb C$ up to a set of Hausdorff dimension zero. Moreover, we prove that $P(f,t)$ equals the supremum of the pressures of $f|_X$ over all invariant hyperbolic subsets $X$ of the Julia set, and we prove Bowen's formula for $f$, i.e. we show that the Hausdorff dimension of the radial Julia set of $f$ is equal to the infimum of the set of $t$, for which $P(f,t)$ is non-positive. Similar results hold for (non-exceptional) transcendental entire or meromorphic functions $f$ in the class $\\mathcal B$ (i.e. with bounded set of singularities), for which the closure of the post-singular set does not contain the Julia set.", "revisions": [ { "version": "v2", "updated": "2011-03-29T13:42:54.000Z" } ], "analyses": { "subjects": [ "37F10", "37F35" ], "keywords": [ "meromorphic function", "bowens formula", "hausdorff dimension zero", "arbitrary transcendental entire", "invariant hyperbolic subsets" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.3855B" } } }