{ "id": "1007.3852", "version": "v2", "published": "2010-07-22T10:40:30.000Z", "updated": "2011-05-23T13:54:28.000Z", "title": "Supercongruences for a truncated hypergeometric series", "authors": [ "Roberto Tauraso" ], "comment": "Revised version", "categories": [ "math.NT", "math.CO" ], "abstract": "The purpose of this note is to obtain some congruences modulo a power of a prime $p$ involving the truncated hypergeometric series $$\\sum_{k=1}^{p-1} {(x)_k(1-x)_k\\over (1)_k^2}\\cdot{1\\over k^a}$$ for $a=1$ and $a=2$. In the last section, the special case $x=1/2$ is considered.", "revisions": [ { "version": "v2", "updated": "2011-05-23T13:54:28.000Z" } ], "analyses": { "subjects": [ "11A07", "11B65" ], "keywords": [ "truncated hypergeometric series", "supercongruences", "congruences modulo", "special case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.3852T" } } }