{ "id": "1007.3401", "version": "v1", "published": "2010-07-20T11:55:51.000Z", "updated": "2010-07-20T11:55:51.000Z", "title": "Smooth solutions for the dyadic model", "authors": [ "David Barbato", "Francesco Morandin", "Marco Romito" ], "categories": [ "math.AP" ], "abstract": "We consider the dyadic model, which is a toy model to test issues of well-posedness and blow-up for the Navier-Stokes and Euler equations. We prove well-posedness of positive solutions of the viscous problem in the relevant scaling range which corresponds to Navier-Stokes. Likewise we prove well-posedness for the inviscid problem (in a suitable regularity class) when the parameter corresponds to the strongest transport effect of the non-linearity.", "revisions": [ { "version": "v1", "updated": "2010-07-20T11:55:51.000Z" } ], "analyses": { "subjects": [ "76D03", "76B03", "35Q35", "35Q30", "76D05", "35Q31" ], "keywords": [ "dyadic model", "smooth solutions", "well-posedness", "strongest transport effect", "navier-stokes" ], "tags": [ "journal article" ], "publication": { "doi": "10.1088/0951-7715/24/11/004", "journal": "Nonlinearity", "year": 2011, "month": "Nov", "volume": 24, "number": 11, "pages": 3083 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011Nonli..24.3083B" } } }