{ "id": "1007.3282", "version": "v1", "published": "2010-07-19T21:03:28.000Z", "updated": "2010-07-19T21:03:28.000Z", "title": "On a common generalization of Koszul duality and tilting equivalence", "authors": [ "Dag Madsen" ], "categories": [ "math.RT" ], "abstract": "We propose a new definition of Koszulity for graded algebras where the degree zero part has finite global dimension, but is not necessarily semi-simple. The standard Koszul duality theorems hold in this setting. We give an application to algebras arising from multiplicity free blocks of the BGG category $\\mathcal O$.", "revisions": [ { "version": "v1", "updated": "2010-07-19T21:03:28.000Z" } ], "analyses": { "subjects": [ "16W50", "16S37", "18E30" ], "keywords": [ "common generalization", "tilting equivalence", "standard koszul duality theorems hold", "finite global dimension", "degree zero part" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 862184, "adsabs": "2010arXiv1007.3282M" } } }