{ "id": "1007.2915", "version": "v2", "published": "2010-07-17T10:05:22.000Z", "updated": "2012-07-18T16:44:41.000Z", "title": "Homogenization of the Peierls-Nabarro model for dislocation dynamics", "authors": [ "Régis Monneau", "Stefania Patrizi" ], "comment": "39 pages", "categories": [ "math.AP" ], "abstract": "This paper is concerned with a result of homogenization of an integro-differential equation describing dislocation dynamics. Our model involves both an anisotropic L\\'{e}vy operator of order 1 and a potential depending periodically on $u/\\ep$. The limit equation is a non-local Hamilton-Jacobi equation, which is an effective plastic law for densities of dislocations moving in a single slip plane.", "revisions": [ { "version": "v2", "updated": "2012-07-18T16:44:41.000Z" } ], "analyses": { "keywords": [ "peierls-nabarro model", "homogenization", "integro-differential equation describing dislocation dynamics", "non-local hamilton-jacobi equation", "single slip plane" ], "note": { "typesetting": "TeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.2915M" } } }