{ "id": "1007.2516", "version": "v1", "published": "2010-07-15T09:31:13.000Z", "updated": "2010-07-15T09:31:13.000Z", "title": "Lévy area for Gaussian processes: A double Wiener-Itô integral approach", "authors": [ "Albert Ferreiro-Castilla", "Frederic Utzet" ], "categories": [ "math.PR" ], "abstract": "Let $\\{X_{1}(t)\\}_{0\\leq t\\leq1}$ and $\\{X_{2}(t)\\}_{0\\leq t\\leq1}$ be two independent continuous centered Gaussian processes with covariance functions$R_{1}$ and $R_{2}$. This paper shows that if the covariance functions are of finite $p$-variation and $q$-variation respectively and such that $p^{-1}+q^{-1}>1$,then the L{\\'e}vy area can be defined as a double Wiener--It\\`o integral with respect to an isonormal Gaussian process induced by $X_{1}$ and $X_{2}$. Moreover, some properties of the characteristic function of that generalised L{\\'e}vy area are studied.", "revisions": [ { "version": "v1", "updated": "2010-07-15T09:31:13.000Z" } ], "analyses": { "keywords": [ "integral approach", "lévy area", "covariance functions", "independent continuous centered gaussian processes", "isonormal gaussian process" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.2516F" } } }