{ "id": "1007.2002", "version": "v2", "published": "2010-07-12T22:31:33.000Z", "updated": "2011-09-02T18:43:44.000Z", "title": "On the finite linear independence of lattice Gabor systems", "authors": [ "Ciprian Demeter", "S. Zubin Gautam" ], "comment": "13 pages, no figures. Minor errors corrected, additional explanation added to proofs in Section 4", "categories": [ "math.CA", "math.FA" ], "abstract": "In the restricted setting of product phase space lattices, we give an alternate proof of P. Linnell's theorem on the finite linear independence of lattice Gabor systems in $L^2(\\mathbb R^d)$. Our proof is based on a simple argument from the spectral theory of random Schr\\\"odinger operators; in the one-dimensional setting, we recover the full strength of Linnell's result for general lattices.", "revisions": [ { "version": "v2", "updated": "2011-09-02T18:43:44.000Z" } ], "analyses": { "subjects": [ "42C40", "42B99", "26B99", "46B15" ], "keywords": [ "lattice gabor systems", "finite linear independence", "product phase space lattices", "linnells result", "full strength" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.2002D" } } }