{ "id": "1007.1071", "version": "v2", "published": "2010-07-07T08:22:37.000Z", "updated": "2011-01-25T17:28:12.000Z", "title": "The t-core of an s-core", "authors": [ "Matthew Fayers" ], "journal": "J. Combin. Theory Ser. A 118 (2011) 1525-1539", "doi": "10.1016/j.jcta.2011.01.004", "categories": [ "math.CO" ], "abstract": "We consider the $t$-core of an $s$-core partition, when $s$ and $t$ are coprime positive integers. Olsson has shown that the $t$-core of an $s$-core is again an $s$-core, and we examine certain actions of the affine symmetric group on $s$-cores which preserve the $t$-core of an $s$-core. Along the way, we give a new proof of Olsson's result. We also give a new proof of a result of Vandehey, showing that there is a simultaneous $s$- and $t$-core which contains all others.", "revisions": [ { "version": "v2", "updated": "2011-01-25T17:28:12.000Z" } ], "analyses": { "keywords": [ "affine symmetric group", "olssons result", "coprime positive integers", "core partition" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.1071F" } } }