{ "id": "1007.1018", "version": "v1", "published": "2010-07-07T00:08:50.000Z", "updated": "2010-07-07T00:08:50.000Z", "title": "On the Symmetry Integral", "authors": [ "Giovanni Coppola" ], "comment": "Plain TeX(5 pages)", "categories": [ "math.NT" ], "abstract": "We give a level one result for the \"symmetry integral\", say $I_f(N,h)$, of essentially bounded $f:\\N \\to \\R$; i.e., we get a kind of \"square-root cancellation\" \\thinspace bound for the mean-square (in $N0$ we have $g(n)\\ll_{\\epsilon} n^{\\epsilon}$, and supported in $[1,Q]$, with $Q\\ll N$ (so, the exponent of $Q$ relative to $N$, say the level $\\lambda:=(\\log Q)/(\\log N)$ is $\\lambda < 1$), where the symmetry sum weights the $f-$values in (almost all, i.e. all but $o(N)$ possible exceptions) the short intervals $[x-h,x+h]$ (with positive/negative sign at the right/left of $x$), with mild restrictions on $h$ (say, $h\\to \\infty$ and $h=o(\\sqrt N)$, as $N\\to \\infty$).", "revisions": [ { "version": "v1", "updated": "2010-07-07T00:08:50.000Z" } ], "analyses": { "subjects": [ "11N37", "11N25" ], "keywords": [ "symmetry integral", "symmetry sum weights", "mild restrictions", "short intervals", "square-root cancellation" ], "note": { "typesetting": "Plain TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.1018C" } } }