{ "id": "1007.0891", "version": "v1", "published": "2010-07-06T13:41:20.000Z", "updated": "2010-07-06T13:41:20.000Z", "title": "A Griffiths' Theorem for varieties with isolated singularities", "authors": [ "Vincenzo Di Gennaro", "Davide Franco", "Giambattista Marini" ], "comment": "10 pages", "categories": [ "math.AG" ], "abstract": "By the fundamental work of Griffiths one knows that, under suitable assumption, homological and algebraic equivalence do not coincide for a general hypersurface section of a smooth projective variety $Y$. In the present paper we prove the same result in case $Y$ has isolated singularities.", "revisions": [ { "version": "v1", "updated": "2010-07-06T13:41:20.000Z" } ], "analyses": { "subjects": [ "14B05", "14C25", "14D05", "14F43", "14J70", "14K30", "14N05" ], "keywords": [ "isolated singularities", "general hypersurface section", "fundamental work", "algebraic equivalence", "smooth projective variety" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.0891D" } } }