{ "id": "1007.0668", "version": "v2", "published": "2010-07-05T12:52:51.000Z", "updated": "2010-09-28T12:35:24.000Z", "title": "Weak closure of Singular Abelian $L^p$-bundles in $3$ dimensions", "authors": [ "Mircea Petrache", "Tristan Rivière" ], "comment": "29 pages, some typing errors fixed", "categories": [ "math.AP", "math.DG", "math.FA" ], "abstract": "We prove the closure for the sequential weak $L^p$-topology of the class of vectorfields on $B^3$ having integer flux through almost every sphere. We show how this problem is connected to the study of the minimization problem for the Yang-Mills functional in dimension higher than critical, in the abelian case.", "revisions": [ { "version": "v2", "updated": "2010-09-28T12:35:24.000Z" } ], "analyses": { "subjects": [ "58E15", "49Q20", "35D30", "35J20", "53C65", "49Q15" ], "keywords": [ "singular abelian", "weak closure", "sequential weak", "minimization problem", "yang-mills functional" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.0668P" } } }