{ "id": "1007.0541", "version": "v1", "published": "2010-07-04T11:35:39.000Z", "updated": "2010-07-04T11:35:39.000Z", "title": "Algebraic entropy of shift endomorphisms on abelian groups", "authors": [ "Maryam Akhavin", "Fatemah Ayatollah Zadeh Shirazi", "Dikran Dikranjan", "Anna Giordano Bruno", "Arezoo Hosseini" ], "comment": "15 pages", "journal": "Quaest. Math. 32 (2009) no. 4, 529-550", "categories": [ "math.GR" ], "abstract": "For every finite-to-one map $\\lambda:\\Gamma\\to\\Gamma$ and for every abelian group $K$, the generalized shift $\\sigma_\\lambda$ of the direct sum $\\bigoplus_\\Gamma K$ is the endomorphism defined by $(x_i)_{i\\in\\Gamma}\\mapsto(x_{\\lambda(i)})_{i\\in\\Gamma}$. In this paper we analyze and compute the algebraic entropy of a generalized shift, which turns out to depend on the cardinality of $K$, but mainly on the function $\\lambda$. We give many examples showing that the generalized shifts provide a very useful universal tool for producing counter-examples.", "revisions": [ { "version": "v1", "updated": "2010-07-04T11:35:39.000Z" } ], "analyses": { "keywords": [ "abelian group", "algebraic entropy", "shift endomorphisms", "generalized shift", "direct sum" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.0541A" } } }