{ "id": "1007.0358", "version": "v2", "published": "2010-07-02T13:05:44.000Z", "updated": "2010-10-23T07:42:30.000Z", "title": "$m$-bigness in compatible systems", "authors": [ "Paul-James White" ], "journal": "C. R. Acad. Sci. Paris, Ser. I 348 (2010) 1049-1054", "doi": "10.1016/j.crma.2010.09.001", "categories": [ "math.NT" ], "abstract": "Taylor-Wiles type lifting theorems allow one to deduce that for $\\rho$ a \"sufficiently nice\" $l$-adic representation of the absolute Galois group of a number field whose semi-simplified reduction modulo $l$, denoted $\\overline{\\rho}$, comes from an automorphic representation then so does $\\rho$. The recent lifting theorems of Barnet-Lamb-Gee-Geraghty-Taylor impose a technical condition, called \\emph{$m$-big}, upon the residual representation $\\overline{\\rho}$. Snowden-Wiles proved that for a sufficiently irreducible compatible system of Galois representations, the residual images are \\emph{big} at a set of places of Dirichlet density $1$. We demonstrate the analogous result in the \\emph{$m$-big} setting using a mild generalization of their argument.", "revisions": [ { "version": "v2", "updated": "2010-10-23T07:42:30.000Z" } ], "analyses": { "subjects": [ "11F80" ], "keywords": [ "compatible system", "taylor-wiles type lifting theorems", "absolute galois group", "mild generalization", "number field" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.0358W" } } }