{ "id": "1007.0284", "version": "v1", "published": "2010-07-02T00:51:12.000Z", "updated": "2010-07-02T00:51:12.000Z", "title": "Borel reducibility and finitely Holder(α) embeddability", "authors": [ "Longyun Ding" ], "comment": "18pages, submitted", "categories": [ "math.LO" ], "abstract": "Let $(X_n,d_n),\\,n\\in\\Bbb N$ be a sequence of pseudo-metric spaces, $p\\ge 1$. For $x,y\\in\\prod_{n\\in\\Bbb N}X_n$, let $(x,y)\\in E((X_n)_{n\\in\\Bbb N};p)\\Leftrightarrow\\sum_{n\\in\\Bbb N}d_n(x(n),y(n))^p<+\\infty$. For Borel reducibility between equivalence relations $E((X_n)_{n\\in\\Bbb N};p)$, we show it is closely related to finitely H\\\"older($\\alpha$) embeddability between pseudo-metric spaces.", "revisions": [ { "version": "v1", "updated": "2010-07-02T00:51:12.000Z" } ], "analyses": { "subjects": [ "03E15", "54E35", "46A45" ], "keywords": [ "borel reducibility", "finitely holder", "embeddability" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.0284D" } } }