{ "id": "1007.0155", "version": "v3", "published": "2010-07-01T12:55:13.000Z", "updated": "2011-02-09T14:46:59.000Z", "title": "Convergence of the all-time supremum of a Lévy process in the heavy-traffic regime", "authors": [ "Kamil Marcin Kosinski", "Onno Boxma", "Bert Zwart" ], "journal": "Queueing Systems 67 (2011) 295-304", "doi": "10.1007/s11134-011-9215-4", "categories": [ "math.PR" ], "abstract": "In this paper we derive a technique of obtaining limit theorems for suprema of L\\'evy processes from their random walk counterparts. For each $a>0$, let $\\{Y^{(a)}_n:n\\ge 1\\}$ be a sequence of independent and identically distributed random variables and $\\{X^{(a)}_t:t\\ge 0\\}$ be a L\\'evy processes such that $X_1^{(a)}\\stackrel{d}{=} Y_1^{(a)}$, $\\mathbb E X_1^{(a)}<0$ and $\\mathbb E X_1^{(a)}\\uparrow0$ as $a\\downarrow0$. Let $S^{(a)}_n=\\sum_{k=1}^n Y^{(a)}_k$. Then, under some mild assumptions, $\\Delta(a)\\max_{n\\ge 0} S_n^{(a)}\\stackrel{d}{\\to} R\\iff\\Delta(a)\\sup_{t\\ge 0} X^{(a)}_t\\stackrel{d}{\\to} R$, for some random variable $R$ and some function $\\Delta(\\cdot)$. We utilize this result to present a number of limit theorems for suprema of L\\'evy processes in the heavy-traffic regime.", "revisions": [ { "version": "v3", "updated": "2011-02-09T14:46:59.000Z" } ], "analyses": { "subjects": [ "60G50", "60G51", "60K25", "60F17" ], "keywords": [ "heavy-traffic regime", "lévy process", "all-time supremum", "levy processes", "convergence" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1007.0155M" } } }