{ "id": "1006.5310", "version": "v1", "published": "2010-06-28T10:39:52.000Z", "updated": "2010-06-28T10:39:52.000Z", "title": "Uniqueness of solutions to the Schrodinger equation on the Heisenberg group", "authors": [ "Salem Ben Said", "Sundaram Thangavelu" ], "comment": "12 pages", "categories": [ "math.AP", "math.FA" ], "abstract": "This paper deals with the Schr{\\\"o}dinger equation $i\\partial_s u({\\bf z},t;s)-\\cal L u({\\bf z}, t;s)=0,$ where $\\cal L$ is the sub-Laplacian on the Heisenberg group. Assume that the initial data $f$ satisfies $| f({\\bf z},t)| \\leq C q_a({\\bf z},t),$ where $q_s$ is the heat kernel associated to $\\cal L.$ If in addition $ |u({\\bf z},t;s_0)|\\leq C q_b({\\bf z},t),$ for some $s_0\\in \\R^*,$ then we prove that $u({\\bf z},t;s)=0$ for all $s\\in \\R $ whenever $ab