{ "id": "1006.4323", "version": "v2", "published": "2010-06-22T16:30:18.000Z", "updated": "2010-09-09T15:23:50.000Z", "title": "The size of exponential sums on intervals of the real line", "authors": [ "Tamás Erdélyi", "Kaveh Khodjasteh", "Lorenza Viola" ], "comment": "Fixed minor problems and added a new remark", "categories": [ "math.CA", "quant-ph" ], "abstract": "We prove that there is a constant $c > 0$ depending only on $M \\geq 1$ and $\\mu \\geq 0$ such that $$\\int_y^{y+a}{|g(t)| \\, dt} \\geq \\exp (-c/(a\\delta))\\,, a \\in (0,\\pi]\\,,$$ for every $g$ of the form $$g(t) = \\sum_{j=0}^n{a_j e^{i\\lambda_jt}}, a_j \\in {\\Bbb C}, \\enskip |a_j| \\leq Mj^\\mu\\,, \\enskip |a_0|=1\\,, \\enskip n \\in {\\Bbb N} \\,,$$ where the exponents $\\lambda_j \\in {\\Bbb C}$ satisfy $$\\text{\\rm Re}(\\lambda_0) = 0\\,, \\qquad \\text{\\rm Re}(\\lambda_j) \\geq j\\delta > 0\\,, j=1,2,\\ldots\\,,$$ and for every subinterval $[y,y+a]$ of the real line. Establishing inequalities of this variety is motivated by problems in physics.", "revisions": [ { "version": "v2", "updated": "2010-09-09T15:23:50.000Z" } ], "analyses": { "subjects": [ "30E10", "26D05", "42A05" ], "keywords": [ "real line", "exponential sums", "subinterval", "establishing inequalities" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1006.4323E" } } }