{ "id": "1006.4238", "version": "v1", "published": "2010-06-22T09:07:19.000Z", "updated": "2010-06-22T09:07:19.000Z", "title": "The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6", "authors": [ "Ivan Nourdin", "Anthony Réveillac", "Jason Swanson" ], "comment": "45 pages", "categories": [ "math.PR" ], "abstract": "Let $B$ be a fractional Brownian motion with Hurst parameter $H=1/6$. It is known that the symmetric Stratonovich-style Riemann sums for $\\int g(B(s))\\,dB(s)$ do not, in general, converge in probability. We show, however, that they do converge in law in the Skorohod space of c\\`adl\\`ag functions. Moreover, we show that the resulting stochastic integral satisfies a change of variable formula with a correction term that is an ordinary It\\^o integral with respect to a Brownian motion that is independent of $B$.", "revisions": [ { "version": "v1", "updated": "2010-06-22T09:07:19.000Z" } ], "analyses": { "keywords": [ "fractional brownian motion", "weak stratonovich integral", "hurst parameter", "symmetric stratonovich-style riemann sums", "resulting stochastic integral satisfies" ], "note": { "typesetting": "TeX", "pages": 45, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1006.4238N" } } }