{ "id": "1006.2678", "version": "v1", "published": "2010-06-14T11:36:42.000Z", "updated": "2010-06-14T11:36:42.000Z", "title": "A quantitative notion of redundancy for infinite frames", "authors": [ "Jameson Cahill", "Peter G. Casazza", "Andreas Heinecke" ], "categories": [ "math.FA" ], "abstract": "Bodmann, Casazza and Kutyniok introduced a quantitative notion of redundancy for finite frames - which they called {\\em upper and lower redundancies} - that match better with an intuitive understanding of redundancy for finite frames in a Hilbert space. The objective of this paper is to see how much of this theory generalizes to infinite frames.", "revisions": [ { "version": "v1", "updated": "2010-06-14T11:36:42.000Z" } ], "analyses": { "subjects": [ "94A12", "42C15", "15A04", "68P30" ], "keywords": [ "infinite frames", "quantitative notion", "redundancy", "theory generalizes", "lower redundancies" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1006.2678C" } } }