{ "id": "1006.2671", "version": "v2", "published": "2010-06-14T11:12:51.000Z", "updated": "2013-06-13T19:35:41.000Z", "title": "A density version of the Halpern-Läuchli theorem", "authors": [ "Pandelis Dodos", "Vassilis Kanellopoulos", "Nikolaos Karagiannis" ], "comment": "27 pages, no figures; Advances in Mathematics, to appear", "categories": [ "math.CO" ], "abstract": "We prove a density version of the Halpern-L\\\"{a}uchli Theorem. This settles in the affirmative a conjecture of R. Laver. Specifically, let us say that a tree $T$ is homogeneous if $T$ has a unique root and there exists an integer $b\\meg 2$ such that every $t\\in T$ has exactly $b$ immediate successors. We show that for every $d\\meg 1$ and every tuple $(T_1,...,T_d)$ of homogeneous trees, if $D$ is a subset of the level product of $(T_1,...,T_d)$ satisfying \\[ \\limsup_{n\\to\\infty} \\frac{|D\\cap \\big(T_1(n)\\times ... \\times T_d(n)\\big)|}{|T_1(n)\\times ... \\times T_d(n)|}>0\\] then there exist strong subtrees $(S_1, ..., S_d)$ of $(T_1,...,T_d)$ having common level set such that the level product of $(S_1,...,S_d)$ is a subset of $D$.", "revisions": [ { "version": "v2", "updated": "2013-06-13T19:35:41.000Z" } ], "analyses": { "keywords": [ "density version", "halpern-läuchli theorem", "level product", "common level set", "strong subtrees" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1006.2671D" } } }