{ "id": "1006.2345", "version": "v2", "published": "2010-06-11T16:51:45.000Z", "updated": "2010-06-14T18:58:02.000Z", "title": "Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature", "authors": [ "Rafael López", "Esma Demir" ], "comment": "19 pages, 1 figure", "categories": [ "math.DG" ], "abstract": "In this work we find all helicoidal surfaces in Minkowski space with constant mean curvature whose generating curve is a the graph of a polynomial or a Lorentzian circle. In the first case, we prove that the degree of the polynomial is $0$ or $1$ and that the surface is ruled. If the generating curve is a Lorentzian circle, we show that the only possibility is that the axis is spacelike and the center of the circle lies in the axis.", "revisions": [ { "version": "v2", "updated": "2010-06-14T18:58:02.000Z" } ], "analyses": { "subjects": [ "53A10" ], "keywords": [ "constant mean curvature", "constant gauss curvature", "minkowski space", "helicoidal surfaces", "lorentzian circle" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1006.2345L" } } }