{ "id": "1006.1795", "version": "v1", "published": "2010-06-09T13:17:01.000Z", "updated": "2010-06-09T13:17:01.000Z", "title": "Quenched Central Limit Theorems for Sums of Stationary Processes", "authors": [ "Dalibor Volný", "Michael Woodroofe" ], "categories": [ "math.PR", "math.ST", "stat.TH" ], "abstract": "It is shown that the existence of an L^1 co boundary does not imply the quenched version of the central limit theorem. In another result it is shown that Hannan's condition does imply quenched convergence for an appropriately centered version of the sum.", "revisions": [ { "version": "v1", "updated": "2010-06-09T13:17:01.000Z" } ], "analyses": { "subjects": [ "60F05" ], "keywords": [ "quenched central limit theorems", "stationary processes", "hannans condition", "quenched version", "imply quenched convergence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1006.1795V" } } }