{ "id": "1006.1782", "version": "v4", "published": "2010-06-09T12:18:20.000Z", "updated": "2011-11-02T00:36:26.000Z", "title": "A local-global principle for rational isogenies of prime degree", "authors": [ "Andrew V. Sutherland" ], "comment": "11 pages, minor edits, to appear in Journal de Th\\'eorie des Nombres de Bordeaux", "journal": "Journal de Th\\'eorie des Nombres de Bordeaux 24 (2012), 475-485", "doi": "10.5802/jtnb.807", "categories": [ "math.NT" ], "abstract": "Let K be a number field. We consider a local-global principle for elliptic curves E/K that admit (or do not admit) a rational isogeny of prime degree n. For suitable K (including K=Q), we prove that this principle holds when n = 1 mod 4, and for n < 7, but find a counterexample when n = 7 for an elliptic curve with j-invariant 2268945/128. For K = Q we show that, up to isomorphism, this is the only counterexample.", "revisions": [ { "version": "v4", "updated": "2011-11-02T00:36:26.000Z" } ], "analyses": { "subjects": [ "11G05" ], "keywords": [ "prime degree", "rational isogeny", "local-global principle", "elliptic curves e/k", "number field" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1006.1782S" } } }