{ "id": "1006.1636", "version": "v2", "published": "2010-06-08T19:03:08.000Z", "updated": "2012-10-23T18:25:23.000Z", "title": "High-dimensional fillings in Heisenberg groups", "authors": [ "Robert Young" ], "comment": "16 pages", "categories": [ "math.GR" ], "abstract": "We use intersections with horizontal manifolds to show that high-dimensional cycles in the Heisenberg group can be approximated efficiently by simplicial cycles. This lets us calculate all of the higher-order Dehn functions of the Heisenberg groups, thus proving a conjecture of Gromov.", "revisions": [ { "version": "v2", "updated": "2012-10-23T18:25:23.000Z" } ], "analyses": { "subjects": [ "20F65", "20F18" ], "keywords": [ "heisenberg group", "high-dimensional fillings", "higher-order dehn functions", "high-dimensional cycles", "simplicial cycles" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1006.1636Y" } } }