{ "id": "1006.1455", "version": "v1", "published": "2010-06-08T05:32:45.000Z", "updated": "2010-06-08T05:32:45.000Z", "title": "Viscosity solutions to second order parabolic PDEs on Riemannian manifolds", "authors": [ "Xuehong Zhu" ], "comment": "13 pages", "categories": [ "math.AP" ], "abstract": "In this work we consider viscosity solutions to second order parabolic PDEs $u_{t}+F(t,x,u,du,d^{2}u)=0$ defined on compact Riemannian manifolds with boundary conditions. We prove comparison, uniqueness and existence results for the solutions. Under the assumption that the manifold $M$ has nonnegative sectional curvature, we get the finest results. If one additionally requires $F$ to depend on $d^{2}u$ in a uniformly continuous manner, the assumptions on curvature can be thrown away.", "revisions": [ { "version": "v1", "updated": "2010-06-08T05:32:45.000Z" } ], "analyses": { "subjects": [ "49J52", "49L25", "35D05" ], "keywords": [ "second order parabolic pdes", "viscosity solutions", "compact riemannian manifolds", "existence results", "assumption" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1006.1455Z" } } }