{ "id": "1006.1375", "version": "v3", "published": "2010-06-07T21:04:15.000Z", "updated": "2016-07-27T15:02:11.000Z", "title": "Global well-posedness and scattering for the defocusing, $L^{2}$-critical, nonlinear Schr{รถ}dinger equation when $d = 2$", "authors": [ "Benjamin Dodson" ], "comment": "75 pages", "categories": [ "math.AP" ], "abstract": "In this paper we prove that the defocusing, cubic nonlinear Schr{\\\"o}dinger initial value problem is globally well-posed and scattering for $u_{0} \\in L^{2}(\\mathbf{R}^{2})$. To do this, we will prove a frequency localized interaction Morawetz estimate similar to the estimate made in \\cite{CKSTT4}. Since we are considering an $L^{2}$ - critical initial value problem we will localize to low frequencies.", "revisions": [ { "version": "v2", "updated": "2011-03-18T21:52:49.000Z", "comment": "85 pages", "journal": null, "doi": null }, { "version": "v3", "updated": "2016-07-27T15:02:11.000Z" } ], "analyses": { "subjects": [ "35Q55" ], "keywords": [ "global well-posedness", "nonlinear schr", "dinger equation", "initial value problem", "localized interaction morawetz estimate similar" ], "note": { "typesetting": "TeX", "pages": 75, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1006.1375D" } } }