{ "id": "1006.1266", "version": "v2", "published": "2010-06-07T14:30:38.000Z", "updated": "2010-06-10T23:41:11.000Z", "title": "Weak convergence for the minimal position in a branching random walk: a simple proof", "authors": [ "Elie Aidekon", "Zhan Shi" ], "comment": "corrected reference in introduction", "journal": "Period. Math. Hungar. (special issue in honour of E. Cs\\'aki and P.R\\'ev\\'esz) (2010), 61,43-54", "categories": [ "math.PR" ], "abstract": "Consider the boundary case in a one-dimensional super-critical branching random walk. It is known that upon the survival of the system, the minimal position after $n$ steps behaves in probability like ${3\\over 2} \\log n$ when $n\\to \\infty$. We give a simple and self-contained proof of this result, based exclusively on elementary properties of sums of i.i.d. real-valued random variables.", "revisions": [ { "version": "v2", "updated": "2010-06-10T23:41:11.000Z" } ], "analyses": { "subjects": [ "60J80" ], "keywords": [ "minimal position", "weak convergence", "simple proof", "one-dimensional super-critical branching random walk", "boundary case" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1006.1266A" } } }