{ "id": "1006.1196", "version": "v1", "published": "2010-06-07T08:04:47.000Z", "updated": "2010-06-07T08:04:47.000Z", "title": "The Diophantine Equation $x^4 + 2 y^4 = z^4 + 4 w^4$---a number of improvements", "authors": [ "Andreas-Stephan Elsenhans", "Jörg Jahnel" ], "categories": [ "math.NT", "math.AG" ], "abstract": "The quadruple $(1\\,484\\,801, 1\\,203\\,120, 1\\,169\\,407, 1\\,157\\,520)$ already known is essentially the only non-trivial solution of the Diophantine equation $x^4 + 2 y^4 = z^4 + 4 w^4$ for $|x|$, $|y|$, $|z|$, and $|w|$ up to one hundred million. We describe the algorithm we used in order to establish this result, thereby explaining a number of improvements to our original approach.", "revisions": [ { "version": "v1", "updated": "2010-06-07T08:04:47.000Z" } ], "analyses": { "subjects": [ "11Y50", "14G05", "14J28" ], "keywords": [ "diophantine equation", "improvements", "non-trivial solution", "original approach" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1006.1196E" } } }