{ "id": "1006.1073", "version": "v2", "published": "2010-06-05T21:52:05.000Z", "updated": "2015-05-19T20:23:06.000Z", "title": "On the functional limits for partial sums under stable law", "authors": [ "Khurelbaatar Gonchigdanzan", "Kamil Marcin KosiƄski" ], "journal": "Statistics and Probability Letters 79 (2009) 1818--1822", "doi": "10.1016/j.spl.2009.05.004", "categories": [ "math.PR" ], "abstract": "For the partial sums $(S_n)$ of independent random variables we define a stochastic process $s_n(t):=(1/d_n)\\sum_{k \\le [nt]} ({S_k}/{k}-\\mu)$ and prove that $$(1/{\\log N})\\sum_{n\\le N}(1/n)\\mathbf {I}\\left\\{s_n(t)\\le x\\right\\} \\to G_t(x)\\quad \\text{a.s.}$$ if and only if $(1/{\\log N})\\sum_{n\\le N} (1/n)\\mathbb{P}\\left(s_n(t)\\le x\\right) \\to G_t(x)$, for some sequence $(d_n)$ and distribution $G_t$. We also prove an almost sure functional limit theorem for the product of partial sums of i.i.d. positive random variables attracted to an $\\alpha$-stable law with $\\alpha\\in (1,2]$.", "revisions": [ { "version": "v1", "updated": "2010-06-05T21:52:05.000Z", "abstract": "For the partial sums $(S_n)$ of independent random variables we define a stochastic process $s_n(t):=(1/d_n)\\sum_{k \\le [nt]} ({S_k}/{k}-\\mu)$ and prove that $$(1/{\\log N})\\sum_{n\\le N}(1/n)\\mathbf {I}\\bigl\\{s_n(t)\\le x\\bigr\\} \\to G_t(x)\\quad \\text{a.s.}$$ if and only if $(1/{\\log N})\\sum_{n\\le N} (1/n)\\pp\\bigl(s_n(t)\\le x\\bigr) \\to G_t(x)$, for some sequence $(d_n)$ and distribution $G_t$. We also prove an almost sure functional limit theorem for the product of partial sums of i.i.d. positive random variables attracted to an $\\alpha$-stable law with $\\alpha\\in (1,2]$.", "comment": null, "authors": [ "Khurelbaatar Gonchigdanzan", "Kamil Marcin Kosinski" ] }, { "version": "v2", "updated": "2015-05-19T20:23:06.000Z" } ], "analyses": { "keywords": [ "partial sums", "stable law", "sure functional limit theorem", "independent random variables", "positive random variables" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1006.1073G" } } }