{ "id": "1005.5555", "version": "v2", "published": "2010-05-30T18:12:26.000Z", "updated": "2011-04-14T17:11:03.000Z", "title": "On the best approximation of certain classes of periodic functions by trigonometric polynomials", "authors": [ "A. S. Serdyuk", "Ie. Yu. Ovsii" ], "journal": "Azerbaijan Journal of Mathematics, Vol. 1, No. 1, 2011, 129-144", "categories": [ "math.CA" ], "abstract": "We obtain the estimates for the best approximation in the uniform metric of the classes of $2\\pi $-periodic functions whose $(\\psi ,\\beta)$-derivatives have a given majorant $\\omega$ of the modulus of continuity. It is shown that the estimates obtained here are asymptotically exact under some natural conditions on the parameters $\\psi ,$ $\\omega $ and $\\beta $ defining the classes", "revisions": [ { "version": "v2", "updated": "2011-04-14T17:11:03.000Z" } ], "analyses": { "subjects": [ "42A10" ], "keywords": [ "periodic functions", "best approximation", "trigonometric polynomials", "natural conditions", "uniform metric" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.5555S" } } }