{ "id": "1005.5260", "version": "v1", "published": "2010-05-28T10:31:45.000Z", "updated": "2010-05-28T10:31:45.000Z", "title": "Exponential moments of first passage times and related quantities for random walks", "authors": [ "Alexander Iksanov", "Matthias Meiners" ], "journal": "Electron. Commun. Probab. 15 (2010), 365-375", "categories": [ "math.PR" ], "abstract": "For a zero-delayed random walk on the real line, let $\\tau(x)$, $N(x)$ and $\\rho(x)$ denote the first passage time into the interval $(x,\\infty)$, the number of visits to the interval $(-\\infty,x]$ and the last exit time from $(-\\infty,x]$, respectively. In the present paper, we provide ultimate criteria for the finiteness of exponential moments of these quantities. Moreover, whenever these moments are finite, we derive their asymptotic behaviour, as $x \\to \\infty$.", "revisions": [ { "version": "v1", "updated": "2010-05-28T10:31:45.000Z" } ], "analyses": { "subjects": [ "60K05", "14F05", "60G40" ], "keywords": [ "first passage time", "exponential moments", "related quantities", "real line", "zero-delayed random walk" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.5260I" } } }