{ "id": "1005.5120", "version": "v2", "published": "2010-05-27T16:56:11.000Z", "updated": "2011-06-28T14:30:50.000Z", "title": "Algebraic independence of periods and logarithms of Drinfeld modules (with an appendix by Brian Conrad)", "authors": [ "Chieh-Yu Chang", "Matthew A. Papanikolas" ], "comment": "26 pages, final version, added appendix by Brian Conrad", "journal": "J. Amer. Math. Soc. 25 (2012), 123-150", "categories": [ "math.NT" ], "abstract": "Let rho be a Drinfeld A-module with generic characteristic defined over an algebraic function field. We prove that all of the algebraic relations among periods, quasi-periods, and logarithms of algebraic points on rho are those coming from linear relations induced by endomorphisms of rho.", "revisions": [ { "version": "v2", "updated": "2011-06-28T14:30:50.000Z" } ], "analyses": { "subjects": [ "11J93", "11G09", "11J89" ], "keywords": [ "drinfeld modules", "brian conrad", "algebraic independence", "logarithms", "algebraic function field" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "J. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.5120C" } } }