{ "id": "1005.4659", "version": "v1", "published": "2010-05-25T19:01:14.000Z", "updated": "2010-05-25T19:01:14.000Z", "title": "On the local time of random walks associated with Gegenbauer polynomials", "authors": [ "Nadine Guillotin-Plantard" ], "comment": "12 pages", "categories": [ "math.PR" ], "abstract": "The local time of random walks associated with Gegenbauer polynomials $P_n^{(\\alpha)}(x),\\ x\\in [-1,1]$ is studied in the recurrent case: $\\alpha\\in\\ [-\\frac{1}{2},0]$. When $\\alpha$ is nonzero, the limit distribution is given in terms of a Mittag-Leffler distribution. The proof is based on a local limit theorem for the random walk associated with Gegenbauer polynomials. As a by-product, we derive the limit distribution of the local time of some particular birth and death Markov chains on $\\bbN$.", "revisions": [ { "version": "v1", "updated": "2010-05-25T19:01:14.000Z" } ], "analyses": { "keywords": [ "random walks", "gegenbauer polynomials", "local time", "limit distribution", "local limit theorem" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.4659G" } } }